PR001971 (Project)

Description:Abstract: Background: A malfunction in the activity of the branched-chain alpha-ketoacid dehydrogenase (BCKAD) complex results in maple syrup urine disease (MSUD), a genetically inherited illness. Three amino acids—leucine, isoleucine, and valine—are typically broken down by branched-chain alpha-keto acid dehydrogenase complex. Abnormal activity in this process, therefore, can affect vital body systems and result in metabolic dysregulation associated with the consequences of this disease. The therapy and follow-up of ill MSUD patients are greatly aided by many researched endogenous metabolites as well as dysregulated biomarkers and pathways. Objectives: Our goal is to add to the increasing knowledge of information about sick MSUD and the pathways that are involved in improving patient outcomes by utilizing untargeted metabolomics to examine the unique profile of MSUD in sick MSUD patients. Methods: This study evaluated the metabolic changes in the dry blood spot (DBS) of 14 sick MSUD patients and 14 healthy controls utilizing untargeted metabolomics studies performed with liquid chromatography–mass spectrometry. Findings: Based on metabolomics analysis,7754 metabolites were found to be highly dysregulated.Out of them,3716 were up-regulated and 4038 were down-regulated.1557 of the annotated metabolites were found to be endogenous metabolites. The research found possible biomarkers for MSUD, including Glutathioselenol and dUDP, which were elevated in sick MSUD relative to healthy controls and LysoPI downregulated in sick MSUD. Moreover, the Sphingolipid metabolism, selenocompound metabolism and porphyrin metabolism pathways were the most impacted in sick MSUD. In summary, our findings shows that metabolomics is a noninvasive approach to understanding the pathophysiology of the medical condition and a potentially useful technique for assessing novel biomarkers in the early detection of sick MSUD.Further research is required regarding the relationship of these dysregulated metabolites to compromised pathways.
Results found

Linked to

 

Label

Description

 

Project

Metabolomics

Subject

A subject from Metabolomics produced as part of the PR001971 project

Biosample

A biosample from Metabolomics produced as part of the PR001971 project

Biosample

A biosample from Metabolomics produced as part of the PR001971 project

Biosample

A biosample from Metabolomics produced as part of the PR001971 project

Biosample

A biosample from Metabolomics produced as part of the PR001971 project

Biosample

A biosample from Metabolomics produced as part of the PR001971 project

Biosample

A biosample from Metabolomics produced as part of the PR001971 project

Biosample

A biosample from Metabolomics produced as part of the PR001971 project

Biosample

A biosample from Metabolomics produced as part of the PR001971 project


  • Subject

    A subject from Metabolomics produced as part of the PR001971 project


  • Biosample

    A biosample from Metabolomics produced as part of the PR001971 project


  • Biosample

    A biosample from Metabolomics produced as part of the PR001971 project


  • Biosample

    A biosample from Metabolomics produced as part of the PR001971 project


  • Biosample

    A biosample from Metabolomics produced as part of the PR001971 project


  • Biosample

    A biosample from Metabolomics produced as part of the PR001971 project


  • Biosample

    A biosample from Metabolomics produced as part of the PR001971 project


  • Biosample

    A biosample from Metabolomics produced as part of the PR001971 project


  • Biosample

    A biosample from Metabolomics produced as part of the PR001971 project

  • DISPLAY PER PAGE
    This repository is under review for potential modification in compliance with Administration directives.